Páginas

quinta-feira, 16 de maio de 2013

A Curiosa Formação dos Tornados

O tornado é uma coluna de ar em rotação acelerada cujo centro apresenta pressão extremamente baixa. Os tornados são comuns na primavera e no começo do verão, sobretudo nas grandes planícies americanas.

Embora os meteorologistas possam alertar a população quando as condições são favoráveis ao aparecimento de tornados, somente agora os estudos estão avançando na compreensão de suas origens e comportamento. Coletar dados sobre eles é extremamente difícil, tendem a aparecer e a desaparecer em uma área antes que os pesquisadores tenham a oportunidade de se aproximar. Apenas recentemente, com a ajuda do radar Doppler, foi possível registrar a exata velocidade do vento de um tornado, que nos mais violentos pode chegar a 450 quilômetros por hora.

Mesmo que todos os detalhes ainda não sejam conhecidos, os meteorologistas possuem idéias gerais de como o processo começa. Como os tornados ocorrem mais freqüentemente, mas não sempre, quando estão presentes tempestades, é lógico supor que as condições necessárias para a formação das tempestades são também favoráveis para os tornados. Ou seja, ambientes quentes e úmidos.



Uma nuvem em funil é comumente a observação do início de um tornado. Se por acaso atingir o solo, ela passa para a próxima fase e é oficialmente designada como um tornado. As paredes de um tornado não são sempre visíveis (como as nuvens), mas são freqüentemente definidas pelos detritos e poeira que sugam até o vórtex.

Quando o funil de um tornado atinge sua largura máxima, algo entre 15 metros e alguns quilômetros, e está perpendicular ao solo, o tornado passa para sua terceira fase e pode ser chamado de tornado maduro. Um tornado maduro é um tornado em sua fase mais violenta, destruindo praticamente tudo em seu caminho.

Há um certo mistério envolvendo a criação e o comportamento dos tornados. As pesquisas deverão afastar esse mistério, mas a fascinação por essa poderosa criação da natureza deve permanecer.


Fonte: onte:
http://br.geocities.com/saladefisica/leituras/tornados.htm

quinta-feira, 15 de novembro de 2012

Por que o forno de micro-ondas não aquece alguns objetos e por que não se devem colocar objetos metálicos nele?

O forno de micro-ondas, presente na maioria das residências, emite micro-ondas com frequência na casa de 2,5 gigahertz. A característica interessante desta faixa de frequência é que a radiação excita, de forma considerável, as moléculas assimétricas, como a da água, óleos e açúcares. Desta forma, quando o eletrodoméstico é utilizado para aquecer os alimentos, apenas estas moléculas aumentam sua energia interna, provocando um aumento de temperatura.
O material dos pratos e potes é, em sua maior parte, formado por moléculas de estrutura extremamente simétrica, por isso o aquecimento deles é muito pequeno. Mas quando colocamos um alimento em um prato para ser aquecido, este prato não está quente ao ser retirado do forno de micro-ondas? A resposta é sim, ele está. No entanto, as micro-ondas não são o motivo deste aquecimento, e sim o contato direto do prato com os alimentos aquecidos.
E por que não devemos colocar objetos metálicos no forno de micro-ondas?
Por dois motivos principais: primeiramente, porque superfícies de metal refletem as micro-ondas, causando uma espécie de blindagem que impede que as ondas atinjam as moléculas líquidas. A outra razão é que o campo elétrico presente no interior do forno provoca o surgimento de correntes elétricas nos metais, os quais acabam sendo carregados e aquecendo rapidamente. Assim, se houver algo como um pedaço de papel ou qualquer outra coisa que possa pegar fogo dentro do micro-ondas, pode ser ocasionado um incêndio.

segunda-feira, 15 de outubro de 2012

Por que a água apaga o fogo?

Para que seja possível entender por que a água apaga fogo, é preciso conhecer as condições necessárias para a existência do fogo, que são basicamente o calor, o comburente (oxigênio) e o combustível. Ao retirarmos um desses três componentes do fogo, ele apaga!
Porém, eliminar o combustível (material que está sendo queimado) é muito difícil, e retirar o oxigênio do ar também. Então, resta apenas retirar o calor existente na reação.
Aí entra a água, que reduz a temperatura do local, retirando assim o calor existente na reação.
No entanto, a água não apaga todos os tipos de fogo.
O fogo pode ser classificado em 3 classes distintas, que dependem da origem do incêndio. Estas classes são: A, B e C.
O fogo A é o único que pode ser usado com água, pois esta vai reagir com o processo de resfriamento. Esse fogo normalmente é originado em materiais sólidos como madeira, tecido, papéis...
O fogo classe B é o originado em combustíveis, tipo óleo, gasolina, querosene, álcool, etc. Esse, deve ser extinto por abafamento, normalmente utilizando o pó químico ou espuma química.
O fogo classe C é o ocorrido em equipamentos elétricos. A água ou qualquer equipamento que possua água não pode ser usado enquanto existir energia, pois a água se torna condutora de eletricidade. Então, deve ser usado o pó químico.

Qual a velocidade da corrente elétrica?

Quando você aciona um interruptor que liga uma lâmpada, na verdade está apenas fazendo com que um circuito se feche. Neste instante, os elétrons livres, presentes na fiação da rede elétrica da sua casa, sofrerão a influência de um campo elétrico e começarão se movimentar. Esta é a corrente elétrica.
Mas você já se perguntou com que velocidade estas partículas infinitamente pequenas se movem, para que a lâmpada se ligue praticamente no momento em que é acionada?
O primeiro pensamento que vem à mente é de que os elétrons percorrem o segmento do condutor, entre o interruptor e a lâmpada, em uma ínfima fração de segundo, levando-nos a pensar que a velocidade de deslocamento destes elétrons é próxima à velocidade da luz.
Na verdade, este raciocínio induz a um grande erro.
Para chegarmos à resposta certa, devemos pensar que o fio condutor, que normalmente é de cobre, é formado por infinitos átomos, desde seu início até a sua extremidade mais distante.
Portanto, ao fecharmos o circuito, acionando o interruptor, estamos fazendo com que todos os elétrons livres se movimentem. Não necessariamente os elétrons que estão próximos a você são os que farão a lâmpada funcionar.
Surpreendentemente, a velocidade de cada elétron é realmente baixa, experimentalmente chega-se a resultados próximos a 1 cm/s, variando conforme o material do condutor e as características do local onde se encontra.
E se pensarmos que as redes no Brasil têm caráter alternado, com frequência de 60 Hz (ou seja, o sentido do movimento da corrente muda 120 vezes a cada segundo), provavelmente chegaremos à conclusão de que é possível que os elétrons livres que estão próximos a sua mão no momento em que você aciona um interruptor podem nunca chegar a atravessar todo o segmento de fio, a ponto de realmente chegarem à lâmpada a qual está ligado.

quarta-feira, 3 de outubro de 2012

Energia Nuclear

Dentre as principais formas de produção de energia elétrica no mundo, a energia nuclear é responsável por cerca de 16% desta eletricidade. Entretanto, há alguns países com maior dependência da energia nuclear: enquanto no Brasil, por exemplo, apenas 3% da eletricidade utilizada é produzida pelas usinas nucleares, na França 78% da energia elétrica é gerada por elas (dados de 2008).
Nos Estados Unidos há mais de 100 usinas nucleares, embora alguns estados utilizem mais este tipo de energia do que outros; enquanto no Brasil temos em funcionamento apenas duas: Angra 1 e Angra 2, estando uma terceira (Angra 3) em fase de instalação, todas constituintes da Central Nuclear Almirante Álvaro Alberto.
A pergunta principal é: como funcionam as usinas nucleares?
Para começar, é importante definir o que é energia nuclear. Trata-se da energia liberada na transformação de núcleos atômicos. Basicamente, o que ocorre é a transformação de um núcleo atômico em vários outros núcleos mais leves, ou ainda, em isótopos do mesmo elemento.
As fissões nucleares, reações que consistem na quebra de um núcleo mais pesado em outros menores e mais leves após a colisão de um nêutron no núcleo inicial, são a base para a produção de energia nas usinas nucleares.
Assim, sendo o urânio um elemento bastante disponível na Terra, é o principal recurso utilizado nas reações nucleares destas usinas. O urânio 238 (U-238), por exemplo, que tem meia-vida de 4,5 bilhões de anos, compõe 99% do urânio do planeta; já o urânio 235 (U-235) compõe apenas 0,7% do urânio remanescente e o urânio 234 (U-234), ainda mais raro, é formado pelo decaimento de U-238.
Apesar de menos abundante, o U-235 possui uma propriedade interessante que o torna útil tanto na produção de energia quanto na produção de bombas nucleares: ele decai naturalmente, como o U-238, por radiação alfa e também sofre fissão espontânea em um pequeno intervalo de tempo. No entanto, o U-235 é um elemento que pode sofrer fissão induzida, o que significa que, se um nêutron livre atravessar seu núcleo, ele será instantamente absorvido, tornando-se instável e dividindo-se.
Consideremos, então, um nêutron que se aproxima de um núcleo de U-235. Ao capturar o nêutron, o núcleo se divide em dois átomos mais leves e arremessa de dois a três nêutrons - este número depende da forma como o urânio se dividiu. Os dois novos átomos formados emitem radiação gama de acordo com o modo que se ajustam em seus novos estados.
A probabilidade de ocorrer fissão induzida em um átomo de U-235 é muito alta: em um reator funcionando corretamente, cada nêutron ejetado provoca uma nova fissão. Além disso, a captura do nêutron e a posterior divisão do núcleo ocorrem muito rapidamente, em intervalos da ordem de 10-12s. Sem contar que um único núcleo, ao dividir-se, libera uma enorme quantidade de energia, tanto na forma de calor quanto na forma de radiação gama. Esta produção de energia é regida pela conhecida equação E=mc2, devido à diferença de massa entre os produtos da fissão e o átomo original.
Para que uma amostra de urânio apresente as propriedades acima, é necessário que ela seja enriquecida, de modo a conter de 2% a 3% a mais de U-235. O enriquecimento de 3% é suficiente para o uso em um reator nuclear que trabalha na produção de energia.
 
Como funcionam as usinas nucleares?
Conforme já dito, para colocar uma usina nuclear em funcionamento é necessário, antes de mais nada, urânio enriquecido. Para se ter uma ideia, 0,5kg de U-235 enriquecido - quantidade usada para fornecer energia a submarinos e porta-aviões nucleares - é equivalente a 3,8 milhões de litros de gasolina.
Em geral, o urânio é formado em péletes (formato de pílula) com diâmetro próximo ao de uma moeda de R$0,10 e espessura de 2,5cm. Estes péletes são dispostos em hastes longas agrupadas em feixes, os quais ficam submersos em água dentro de um recipiente de pressão. A água, por sua vez, tem a função de refrigerar o sistema.
Para que o reator funcione, o feixe precisa ser levemente supercrítico. Isso significa que, caso fosse deixado sozinho, o urânio derreteria. Portanto, para que isso não ocorra, são inseridas no feixe hastes de controle (também chamadas de hastes de comando ou, ainda, barras de controle), as quais são feitas de material capaz de absover os nêutrons, utilizando um dispositivo que pode abaixar e/ou elevar as hastes.
Assim, elevar e baixar as hastes controla o nível das reações nucleares. Portanto, quando se deseja maior produção de calor a partir do núcleo de urânio, as hastes são elevadas para fora do feixe, enquanto para produzir menor quantidade de calor, as hastes são abaixadas dentro do feixe. Além disso, as hastes possuem outras funções: baixá-las totalmente dentro do feixe podem desligar o reator, no caso de um acidente, ou tornar possível a troca de combustível.
O calor liberado durante a reação nuclear é responsável pelo aquecimento da água, a qual é transformada em vapor. Esse vapor aciona uma turbina, a qual faz girar um gerador, responsável por produzir a energia.
Em algumas usinas, o vapor do reator passa através de um trocador de calor intermediário a fim de transformar a água de um outro circuito em vapor, o qual será o responsável pelo acionamento da turbina a vapor. Além disso, em alguns reatores, o fluido de resfriamento é um gás (CO2) ou metal líquido, permitindo que o núcleo seja operado em temperaturas mais elevadas.

domingo, 23 de setembro de 2012

Como funcionam os cinemas 3D?

Desde que foi criado, o cinema evoluiu muito, ganhando som, cores e efeitos especiais. A última novidade são os filmes em 3D, os quais precisam de óculos especiais, como os da figura abaixo, para serem assistidos.
Nos filmes em 3D, os cenários, as pessoas e até mesmo os personagens de desenho podem ser visualizados tridimensionalmente, como se fossem reais e estivessem mais próximos de nós. Assim, a ideia dos produtores destes é "enganar" nosso cérebro e nossos olhos, fazendo-os pensar que estão diante de um espaço tridimensional e não à frente de uma tela bidimensional comum.
Para entendermos o funcionamento dos cinemas 3D, é fundamental que saibamos que os seres humanos possuem visão binocular, de modo que cada olho enxerga uma imagem diferente, sendo o cérebro o responsável por combiná-las em uma única imagem.
A diferença angular (quase imperceptível) entre estas duas imagens, denominada desvio, é utilizada pelo cérebro para ajudar na percepção de profundidade. É exatamente por esta razão que, ao perder a visão de um dos olhos, as pessoas perdem também a noção espacial.
As antigas produções de filmes 3D utilizavam imagens anáglifas para aproveitarem a visão binocular e o desvio. Estas imagens incluem duas camadas de cor numa única tira do filme reproduzida por um projetor, sendo uma das camadas vermelha e a outra azul (ou verde).
Assim, quando desejávamos assistir a estes filmes, fazia-se necessáro utilizarmos um óculos 3D com uma lente vermelha e a outra azul (ou verde), como os da figura do topo desta página. Estas lentes "obrigavam" um olho a enxergar a seção vermelha da imagem e a outra, a seção azul (ou verde).
É devido às diferenças entre as duas lentes que o cérebro as interpreta como uma imagem de três dimensões. Entretanto, por conta da utilização de lentes coloridas, a coloração da "imagem final" não é precisa, de modo que há dados que relatam que esta tecnologia trouxe muitos problemas para as pessoas como dores de cabeça, lesões oculares e náusea.

sexta-feira, 7 de setembro de 2012

Como funcionam as redes Wi-Fi?

Frequentemente nos deparamos com pessoas em aeroportos, bibliotecas, restaurantes, etc. utilizando dispositivos eletrônicos, como, por exemplo, notebooks, para acessarem a internet sem utilizar cabos para a conexão.
A chamada rede Wi-Fi é uma rede sem fio (também chamada de wireless) na qual podemos ter acesso à internet apenas por sinal de ondas de rádio, assim como as televisões e os celulares, não sendo necessária a utilização de fios conectores.

As ondas de rádio são ondas eletromagnéticas (formadas pela combinação dos campos elétrico e magnético que se propagam no espaço perpendicularmente transportando energia) utilizadas pelas emissoras de rádio.
Basicamente, nos locais onde há sistemas que fazem uso de ondas de rádio, um circuito elétrico é o responsável por provocar a oscilação de elétrons na antena emissora. Estes elétrons são acelerados e, em virtude disso, emitem ondas de rádio, as quais transportam as informações até uma antena receptora.
As redes Wi-Fi, utilizadas para fornecer acesso sem fio à internet, operam de forma análoga: um adaptador (sem fio) para computadores capta as informações e as traduz na forma de sinais de rádio, as quais são transmitidos com o auxílio de uma antena.
O roteador (também sem fio), cuja função é realizar a distribuição dos sinais da rede, além de "escolher" o melhor caminho para o envio de um conjunto de dados, é quem recebe o sinal e o decodifica. É ele quem envia as informações para a internet usando uma conexão (com fios), a Ethernet, responsável pela interconexão de redes locais.
É válido salientar que o processo inverso também pode ocorrer: o roteador pode receber as informações da internet, traduzi-las em sinais de rádio e enviá-las para o adaptador.